

012 NUMBER Strand

## - Counting Numbers

Say the number sequence forward and backward by $2 s, 5 s$, and 10 s using starting points that are multiples of 2,5 , and 10 to 100 . Say the number sequence using starting points from 1 to 9 by 10 s to 100 . Say the number sequence forward by $2 s$ starting from 1 to 100 . Estimate quantities to 100 using referents.

- Representing Whole Numbers

Demonstrate ifa number up to 100 is even or odd. Describe relative position using ordinal numbers. Represent, describe, compare, and order whole numbers to 100 . Illustrate the meaning of place value for numbers to 100 .

- Operations with Whole Numbers

Demonstrate and explain the effect of adding zero to or subtracting zero from any number. Demonstrate an understanding of addition (limited to 1- and 2-digit numerals) with answers to 100 and corresponding subtraction by using personal strategies, by creating and solving problems, and by explaining that the order in which numbers are added does not affect the sum, but that the order in which numbers are subtracted may affect the difference. Recall of facts to 10 , doubles to $9+9$, and related subtraction facts is expected by the end of Grade 2. -8 N. 9 N. 10

## Patterns

- Patterning and Algebraic Thinking Predict an element in a repeating pattern using a variety of strategies. Demonstrate an understanding of increasing patterns by describing. reproducing, extending, and creating patterns using a variety of representations and numbers to $100 .-$ PR. 1 PR. 2
- Variables and Equations
- Algebraic Representations with Equations Demonstrate and explain the meaning of equality and inequality, and record equalities and inequalities using the equal and not-equal symbol. - PR. 3 PR. 4


## SHAPE AND SPACE Strand

## Measurement

- Length, Area, Volume, and Mass Relate the size of a unit of measure to the number of units (limited to non-standard units) used to measure length (including the iteration process) and mass. Compare and order the attributes of objects using non-standard units, and make statements of comparison. Demonstrate that changing the orientation of an object does not alter the measurement of its attributes. $\operatorname{SS.} 2$ SS. 3 SS. 4 SS. 5
- Time

Relate the number of days to a week and the number of months to a year in a problem-solving context. IIII SS. 1

- 3-D Objects and 2-D Shapes
- Identifying, Sorting, Comparing, and Constructing Sort, describe, compare, and construct 2-D shapes and 3-D objects. Identify 2-D shapes as parts of 3-D objects in the environment. SS. 6 SS. 7 SS. 8 SS 9


## STATISTICS AND PROBABILITY Strand

## - Data Analysis

- Collecting, Organizing, and Analyzing Data Gather and record data to answer questions about self and others. Construct and interpret concrete graphs and pictographs to solve problems. IIIII
- Concept/learning outcomes are taught in this grad only and will be applied in future grades.
- Concept/learning outcomes introduced in previous grade(s) are further taught in this grade and will be applied in future grades.
IIII Concept/learning outcomes are taught for the first time in this grade and will be taught in future grade(s).
- Concept/learning outcomes introduced in previous grades are taught in this grade and will continue to be taught in future grades.


## REPORT CARD CATEGORIES

## KNOWLEDGE AND UNDERSTANDING OF MATHEMATICAL CONCEPTS

The student demonstrates knowledge and understanding of grade-specific mathematical concepts and skills in each strand (number, patterns and relations, shape and space, statistics and probability).

## MENTAL MATH AND ESTIMATION

The student uses math knowledge and number facts to calculate mentally or estimate within each strand (number, patterns and relations, shape and space, statistics and probability). Students apply mental math strategies with efficiency, accuracy, and flexibility. They are able to make reasonable estimates of values or quantities using benchmarks and referents.

## PROBLEM SOLVING

The student applies knowledge, skill, or understanding to solve problems in each strand (number, patterms and relations, shape and space, statistics and each strand ( number, Patterns sand relations, shape and space, statistics and
probability). By learning to o olve problems and by learning through problem solving, students connect mathematical ideas in new contexts. Students think logically, visulize, model, reason, and communicate and justify their solutions.

The seven interrelated mathematical processes are intended to permeate teaching and learning and describe the actions of doing mathematics. The math processes allow students to engage in thinking about mathematics, and support the acquisition and the use of mathematical knowledge and foundational skills that develop conceptual understanding.

These processes are outlined in detail in Kindergarten to Grade 8 Mathematics: Manitoba Curriculum Framework of Outcomes (2013).

| COMMUNICATION | CONNECTIONS | MENTAL MATH AND ESTIMATION | PROBLEM SOLVING | REASONING | TECHNOLOGY | VISUALIZATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Students communicate daily (orally, through diagrams and pictures, and by writing) about their mathematics learning. They need opportunities to read about, represent, view, write about, listen to, and discuss mathematical ideas. This enables them to reflect, to validate, and to clarify their thinking. Journals and learning logs can be used as a record of student interpretations of mathematical meanings and ideas. | Mathematics should be viewed as an integrated whole, rather than as the study of separate strands or units. Connections must also be made between and among the different representational modes-concrete, pictorial, and symbolic (the symbolic mode consists of oral and written word symbols as well as mathematical symbols). The process of making connections, in turn, facilitates learning. Concepts and skills should also be connected to everyday situations and other curricular areas. | Mental mathematics and estimation are a combination of cognitive strategies that enhance flexible thinking and number sense. Strategies within mental mathematics and estimation enable students to calculate mentally without the use of external aids. In the process, they improve their computational fluencydeveloping efficiency, accuracy, and flexibility. | Students are exposed to a wide variety of problems in all areas of mathematics. They explore a variety of methods for solving and verifying problems. In addition, they are challenged to find multiple solutions for problems and to create their own problems. | Mathematics reasoning involves informal thinking, conjecturing, and validating these help children understand that mathematics makes sense. Students are encouraged to justify, in a variety of ways, their solutions, thinking processes, and hypotheses. In fact, good reasoning is as important as finding correct answers. | Technology contributes to the learning of a wide range of mathematical learning outcomes, and enables students to explore and create patterns, examine relationships, test conjectures, and solve problems. | Mental images help students to develop concepts and to understand procedures. Students clarify their understanding of mathematical ideas, images, and explanations. |

